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The r e su l t s  a r e  shown he re  of an exper imenta l  and analyt ical  study eoneerningthe  h e a t t r a n s f e r  
between sodium and s o d i u m - p o t a s s i u m  al loy in counterflow heat  exchangers  with eounterflow 
mixed convection in one of the ducts.  I t  is shown that,  at  low Pe  numbers ,  the heat  t r a n s f e r  
is de te rmined  by the effect  of longitudinal heat  over runs  in the liquid. 

Counterflow mixed convection of heat  is obse rved  in a liquid heated while moving downward or  cooled 
while moving upward through ducts of l a rge  c ro s s  sect ions .  This mode o f  heat  t r a n s f e r  is cha rac te r i zed  by 
the p r e s e n c e  of a l a rge  turbulence component  XTx in the longitudinal t he rma l  conductivity of the liquid - a 
r e su l t  of the posi t ive  ver t i ca l  gradient  of liquid densi ty  and, as a consequence,  of l a rge  heat  ove r runs  along 
the height (according to indi rec t  e s t ima te s  based on the data in [2], A = ~Tx/X may  be equal to 10 or  more) .  
This  makes  the t rue  " l iquid- to- l iquid"  t e m p e r a t u r e  drop At in the heat  exchanger  much s m a l l e r  than Atp 
calculated outside the heat  t r a n s f e r  zone. The effect  of longitudinal heat over runs  in a heat  exchanger  has 
been studied in [1, 2] for  the case  XTx = 0. The equations descr ib ing  the change in the mean t e m p e r a t u r e  
of the liquid in the ducts a t  W l = W 2 a r e  then: 

t ' ; -  _Pe l; + -4Nuh (t 2 - - t  1) = 0, (1) 

t~ -~ Pe t2 - -  4Nu k (t2 - -  t~) = 0. (2) 

The boundary conditions a r e  

' b) t~ 0; X = 0  a) t l = - ~ e  t,, = 

t~ 
X----L c) t ~ = 0 ,  d) t 2 = t  o Pc" 

(3) 

Equations (1) and (2) apply where  the wall  a c r o s s  which heat  t r a n s f e r  occurs  has a negligibly smal l  
longitudinal component  of t he rm a l  conductivity and the geomet r i ca l  dimensions of the ducts a r e  constant  
o v e r  the i r  act ive  lengths.  

When A = const ~ 0 in one of the heat  exchanger  ducts (e. g . ,  in the one denoted by subscr ip t  2), then 
the r e spec t ive  equations become  

t] '-- P-2-e t; § 4Nuh. (t~ -- t l )  = 0, (4) 

t~'+ Pe /; 4Nuh (t~--tl) = o, (5) 
I + A  I + A  

Obviously,  these equations will be identical to Eqs.  (1), (2) if in the l a t t e r  ones Pe,  NUk, and ~ a r e  r e -  
p laced by Pe / (1  + A), NUk/(1 + A), and ~ / (1  + A) respec t ive ly .  
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Fig. 1. Annular tes t  duct with a coil of tubing: 1) main outlet for  
sodium, 2) bypass  outlet for  sodium, 3) dropping tube with a i r  for  
insulation, 4) coiled tubing, 5) housing. 

Fig. 2. Operating effect iveness of coil turns:  a ) a s  a function of 
length, at Pe = 4.5 (1) full coil, 2) upper part ,  3) lower  part); b) as  
a function of Pc,  at full length (1) Pe = 4.5, 2) Pe = 12.5, 3) Pe = 
16.5). Length/,)  (m). 

We will consider  the case where ~/(1 + A) ~ 0 and Eq. (4) is 

tl 4Nuh (t2_.tx) = 0, (6) 
Pe 

while boundary condition (3e) becomes  meaningless.  Solving (5) and (6) simultaneously,  we obtain 

t o Pe 1 

no=13 1+13 4-~uk]l 4--~uh + .  p------~ + L - -  + 1 +____~Ape expl~L , (9) 

Pe 4Nuk ] ~= _ ] +-----/+~-jj. 

Let ~ = 4Nuk/Pe 2 (i + A). Then 

to At= H---~ ( 1 @ --~-) (-~- % exp ~X ), (10) 

Atp =t~lx=o= Ho 

There  are  two ways of calculating the quantity of heat Q t r ans fe r red  in the heat exchanger: Q = KAt 
and Q = KpAtp. In the second case one tentatively includes the effect  of longitudinal heat overruns  in the 
heat t r ans fe r  coefficient while the tempera ture  drop is assumed to remain without change. Then 

Kpd= At Nu h ~ a ~ (1 - -  exp lgL) Pc. (12) 
NUcr = ~ = " - A  T Nuk= 1-t-~ ( lq -a )  ~ 4L 
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I t  is evident that  the f i r s t  t e r m  in (12) becomes  equal to NUcr at L - -  ~ .  At low Pe  numbers  and l a rge  
values  of  A, ~ >> 1 and 

Nu = Pe____~ 2 + (1--expl3L) Pe. (13) 
cr 4 (1 +A) 4L 

On the bas i s  of re la t ions  {7)-(13) one can draw cer ta in  conclusions about the heat  t r a n s f e r  at l a rge  
values  of  h .  F i r s t  of  all,  the t rue  t e m p e r a t u r e  drop (10) is ve ry  smal l  in that  p a r t  of the heat  exchanger  
where  f ix ~ 0, i . e . ,  where  the heat  t r a n s f e r  occurs  essen t ia l ly  at the end section (of the duct with A > 0) 
and the length of act ive  end sect ion d e c r e a s e s  as the Pe number  d e c r e a s e s .  Secondly, the value of NUcr 
and thus the actual  quantity of heat  t r a n s f e r r e d  depend ve ry  l i t t le  on the t rue  value of the heat  t r a n s f e r  coef-  
f icient  K. This  means  that  the fo rm of the equation for  Nucr  will,  at  low Pe number s ,  be common for  a 
l a rge  c lass  of heat  exchangers  with ducts of var ious  shapes.  To this c lass  will a lso belong heat  exchangers  
whose geome t r i ca l  p a r a m e t e r s  a r e  e i ther  constant  o r  pe r iod ica l ly  var iab le  in lengthwise direct ion.  

Le t  us analyze  the individual quanti t ies which en te r  into Eq. (13) for  the genera l  case .  F o r  this ,  we 
wri te  the s y s t e m  of heat  ba lance  equations for  a heat  exchanger  whose heat t r a n s f e r r i n g  sur face  and whose 
duct c r o s s  sect ions  have a r b i t r a r y  shapes ,  considering a lso  that  Flk I << F2(k 2 + XTx), 

t ; -  l(S d t~ + F~2 (1 + A )  l F~,~ (1 T (t~ - -  tl)----- O, 
+ A) 

t ; - -  KS . d T ( t~-- t~)=0.  
l W 

This s y s t e m  t r a n s f o r m s  into s y s t e m  (5), (6) if we subst i tute 

According to (13), 

WdT = Pe, KS d~ -- Nua. (14) 
F=L= l 4F2s 2 

KpS d T (14a) 
NUcr = l 4F2~, , 

Thus,  when u >> 1, in the genera l  case  the quantity Nucr  (14a) can be e x p r e s s e d  in t e r m s  of Pe (14) 
and L coordinates .  

This ana lys i s  leads to st i l l  another  conclusion. I f  Eq. (13) is made explici t  with the aid of (14) and 
(14a), we will obtain when exp/3L ~ 0: 

KpS = F2L2(i +A)  {- W. (15) 

The quantity of heat  t r a n s f e r r e d  in the heat  exchanger  is 

Q = G S  atp. 

I t  is then evident f rom (15) that  the quantity of t r a n s f e r r e d  heat  will i nc r ea se  as a l a y e r  of impur i t i es  p r e -  
c ipi ta tes  on the heat  exchanger  s u r f a c e s ,  s ince the role  of a sediment  when u >> 1 is solely to reduce F 2 and 
to the s a m e  extent  A. Inasmuch  as  the quantit ies Q and K in the exper iments  a r e  de te rmined  f rom the 
equal i t ies  

W0 
O= O, G -  

SoAtp 

(S O is the or iginal  su r face  a rea ) ,  so Kp will obviously inc rease .  

As Pe i n c r e a s e s  while Nuk and A dec rease ,  v d e c r e a s e s  and the condition ~ >> 1, for  which the fo rego-  
ing conclusions were  made,  becomes  l e s s  valid. 

The ve ry  quanti t ies which de te rmine  ~ depend on many fac tors .  Thus,  A depends on Pe,  l, dT, 0, 
and on the design of the heat  t r a n s f e r  zone (coil, f ins,  etc.  ), while Nu k depends on the t he rma l  r e s i s t ance  
of the walls  and the oxide sca le  as well  as on the heat  t r a n s f e r  in both ducts.  There fo re ,  apparent ly ,  the 
ef fec ts  of the var ious  p a r a m e t e r s  on the heat  t r a n s f e r  is genera l ly  ve ry  complex.  Quali tat ively,  however ,  
they a re  quite accu ra t e ly  a s s e s s e d  on the bas is  of the foregoing analys is .  
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Fig. 3. Heat  t r a n s f e r  with sodium during cotmterflow 
mixed convection: 1-3 annular  duct with a coil (L = 4.74 
(1), 2.21 (2), and 2.53 (3)), 4, 5 tubing (d 2 = 135 m m  (4) 
and 68 m m  (5)). Solid curve  r e p r e s e n t s  equation Nu = 
5 + 0.025Pe ~ dashed curve r e p r e s e n t s  equation NUp = 
0 .27Pel . I /L .  

Exper imen t s  w e r e  p e r f o r m e d  with a " s o d i u m / N a - K "  heat  exchanger  shown in Fig. 1. I t s  main fea -  
ture  was the provis ion for  measu r ing  the t e m p e r a t u r e  r i se  of the s o d i u m - p o t a s s i u m  alloy in each turn of 
the coil and, the re fo re ,  the distr ibution of heat  t r a n s f e r  intensi t ies  as well as  the mean t e m p e r a t u r e s  of 
the al loy along the duct. 

The N a - K  ducts were  a r r anged  so that  the sodium could be cooled by the ent i re  coil (15 turns) as 
well  as by its upper  pa r t  (7 turns) o r  lower  pa r t  (8 turns) only. This  made it  poss ib le  to find out how the 
heat  t r a n s f e r  p r o c e s s  is affected by the act ive  length of the exchanger  and by its inlet conditions. 

In these  exper iments  we measured  the sodium t e m p e r a t u r e s  at  the inlet and at  the outlet  of the an-  
nular  duct, and N a - K  t e m p e r a t u r e s  at  the inlet to and a t  each turn of the coil ,  the flow r a t e s  of sodium and 
N a - K ,  and the uncompensated heat  l o s s e s  through the outer  su r faces  covered  with c a l o r i m e t e r s  and c o m -  
pensat ing hea te r s .  

The groups of t e s t s  we re  pe r fo rmed :  the f i r s t  one to de te rmine  the effect  of Pe ,  L,  and Atp on the 
heat  t r a n s f e r  with pure  sodium (oxygen content not exceeding 5" 10-~/~ by weight) a t  W 1 = W2, the second one 
to study the var ia t ion  of Kp during precipi ta t ion of sodium oxide in the t e s t  model at a constant  flow ra te  of 
the heat  c a r r i e r .  

The values obtained for  Kp under pure  conditions have shown - as have those obtained in exper iments  
with concentr ic  heat  exchangers  [2] - a tendency to follow the relat ion Kp ~ W,but  they a lso  show a d i v e r -  
gent pa t te rn  with r e s pec t  to L. The l a r g e r  the number  of act ive  turns  ( l a rge r  L) is ,  the lower  is the value 
of Kp. 

F u r t h e r m o r e ,  f rom the t e m p e r a t u r e  dis t r ibut ions in the N a - K  al loy along the coil turns  one can see  
that  mos t  of the heat  t r a n s f e r  occurs  through the turns  nea r  the end of the sodium duct. The curves  in Fig. 
2a r e p r e s e n t  the rat io  of t e m p e r a t u r e  r i s e  pe r  turn to t e m p e r a t u r e  r i s e  in the al loy over  the ent i re  coil 
length. I t  is evident he re  that,  with the same  Pe number ,  the end port ion (with r e f e r e n c e  to the sodium) 
of the coil opera tes  at the same  intensi ty r e g a r d l e s s  of the act ive  number  of turns  (length of coil). When 
the Pe  number  becomes  higher ,  as can be seen in Fig. 2b, the "ac t ive"  turns  region widens and the t h e r -  
mal  flux tends toward equi l ibr ium ove r  the ent i re  length. 
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Fig. 4. Change in the calculated 
value of the heat  t r ans f e r  coeffi-  
cient plotted against  t ime during 
the precipitat ion of oxide (the num- 
bers  under the curve indicate the 
numbers  of readings taken during 
a 24 h period). Kp(W/m 2. ~ T 
(days). 

Qualitatively, these facts agree  with tile resul ts  of analysis .  
Therefore ,  the data on heat t r ans fe r  should also be general ized 
qualitatively on the basis  of that analysis ,  i . e . ,  by taking into ac-  
count relat ions (14) and (14a). 

In o rde r  to compute Nucr,  Pc ,  and L,  one must  know S, Fz, 
and dT. S denotes the a rea  of the entire coil surface:  S = ~d 0 -7,dTn. 
The presence  of a coil makes the quantities F 2 and d T vary  p e r -  
iodically. I t  appears  that the method of calculating F 2 and dT is of 
little importance in the process ing  of experimental  data. Indeed, 
according to (155, the value of Kp does not depend on d T and very  
little on the total longitudinal thermal  conductivity of the duct 
F2~2(1 + AS. Since the value of A is indeterminate,  it is ent irely 
permiss ib le  to d i s regard  the coil in calculating F 2 and dT: 

(De - -  d~), dT =- Dt - -  d 1. 

Bearing this in mind and according to (14a), we have 

Kpd T ~xdon d r 
N u c r = ~  " ~ " Dlq_d x " 

Here d o is the coil d iameter ,  d T is the tube diameter ,  n is the number of turns,  D 1 is the outside d iameter  
of the annular duct, and d 1 is the inside d iameter  of the annular duct. 

All data, including those in [2], have been processed  in NUp(Pe) coordinates,  as shown in Fig. 3, 
where 

Nu~ : NUcr ~-zp a2At ~ 
gp  ' ~ w -  5/w " 

This method of data process ing  has been necessa ry  for the purpose of general izing data which r e p r e -  
sent the heat t r ans fe r  in the par t i cu la r  duct studied in our  experiment.  This can be done when in the r e l a -  
tion 

1 1 
~- Pwp -t- Pip, 

Kp (~2p 

1/Ce2p is much g r ea t e r  than Pwp and Pip. Here Pip = Pi{Atip/~:i 5 =Pi (1 + 6ti/A~i5 = Pi + 5 t i /q  are  the calcu-  
lated {apparent) thermal  res i s tances  of the wall and of the annular c learance (the coil), 5t i is the fraction 
by which the total t empera tu re  drop ac ros s  the heat exchanger is reduced as a resul t  of longitudinal heat 
over runs  at  the respect ive  element.  Thus, for  the heat t r ans fe r r ing  surface of the "tube in a tube ~ heat 
exchanger  we have 

Pwp = Pw -~-: Fw~Ot~/Ox ~ 4d  

W2Otl/OX _ _ l  ~ Pw q- - - p e  ~ --Z,~" 
17 

By analogy, for  the annular c learance .  

4d 
Pip = P1-1- - -  �9 - -  . 

Pe 2 L 2 

As was to be expected, the tes t  points for  Nup at low Pe numbers  follow the qualitative predictions 
based on the analysis .  Within the ranges 3 < Pe < 30 and 2 < L < 5 the data for all known heat exchangers 
fit sufficiently well into the formula:  

pe I . 1 
Nup = 0.27 - -  (165 

L 

For  simplici ty,  the t e rm corresponding to N U p / L  ~ co [see (125] is not included here.  The contribution of 
this t e rm is, however,  ref lected in the coefficient and the exponent of Pe,  which are  here  0.27 and 1.1 r e s -  
pectively instead of 0.25 and 1.0 as in (12). The condition v >> 1 is not maintained when Pe > 30, which 
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TABLE i 

Part I I I I ] I I I  I v L v  

Quantity of oxide, g 
% quantity found 

2 00 20701002 r 200 L 720 
33.8 38.2 13.8 3.8 10.4 

t r ans fe r ,  we studied the operation at Pe = 7 and Atp = 

makes a descript ion of the heat  t r a n s f e r  p rocess  
much more  complicated.  At the peak values of Pe 
the heat  t r ans fe r  p rocess  cannot become stable while 
the t r an sv e r se  turbulent  heat t r a n s f e r  intensifies as 
a resu l t  of the longitudinal heat t r ans fe r ,  and this 
causes  the Nu numbers  to be high. 

In o rd e r  to de termine  the effect  which the p r e -  
cipitation of oxides in the tes t  pa r t  has on the heat  
40~ Oxygen was injected into the system in the 

form of sodium peroxide in 70 g doses  through a valve in the pump tank. Init ially the sodium peroxide 
powder produced a br ief  fluctuation in the sodium flow ra te ,  which then quickly stabilized. After  3 kg of 
sodium peroxide had been poured in, the hydraulic res i s tance  of the tes ted heat exchanger  section increased  
so much that the sodium t empera tu re  at the outlet had to be increased  in o rd e r  to bring the flow ra te  of 
sodium to its p resc r ibed  level  (the flow rate  of N a - K  in the coil was reduced).  

The sequence Of adding sodium peroxide and the result ing change in the calculated heat t r an s f e r  coef-  
ficient is shown plotted against  t ime in Fig. 4. Only 5.3 kg sodium peroxide was added, which is equiva- 
lent to 8.5 kg or  approximately 9 dm 3 sodium oxide (the acceptable volume concentrat ion of oxide is approxi-  
mately 40%). It  is evident that,  as oxide precipi ta ted in the t es t  section of the heat exchanger ,  the c a l c u -  
lated value of the heat t r an s f e r  coefficient increased.  The stepwise increase  of Kp a f te r  shutdown had, 
apparently,  to do with the dr i f t  of oxide f rom the outlet section of the apparatus into the heat  t r an s f e r  zone. 
Such a dr i f t  could occur ,  because a f te r  the shutdown it was not possible to establ ish the specific opera t ing  
conditions and because for  72 h there  was no N a - K  alloy admitted,  or  it was le t  into a lower coil section 
only and at a low flow ra te .  The sodium tempera tu re  at the outlet f rom the annular  duct fluctuated between 
130 and 300~ The values of Kp were  not determined at that t ime.  The tendency for  Kp to increase  as the 
oxide l aye r  on the heat exchanger  built up can be explained qualitatively on the strength of the ea r l i e r  analy-  
sis (see Eq. (15)). 

After  completion of the exper iment ,  the ent i re  s t ruc ture  was cut into five par ts  for  an oxygen contentl 
analysis .  The par t s  were  ar ranged as follows: the ent i re  top down to the f i r s t  coil turn (part  I), turns  
1-2-3 (part  II), turns  4 -5 -6 -7  (part III), turns 8-9-10-11 (part  IV), and turns  12-13-14-15 with the bottom 
(part  V). A chemical  analysis yielded 6984 g of oxide, i . e . ,  82.2% of the amount introduced. 

The distribution of oxide content among the various par ts  was as shown in Table 1. 

It  is evident f rom the resul ts  of the chemical  analysis  that a large portion of the oxide prec ip i ta ted  in 
the zone of most  intensive heat  t r ans fe r .  A quite considerable  portion of the oxide precipi ta ted  above, in 
the isothermal  zone. The high oxide content in this region explains why the duct became clogged up a l ready 
during the f i r s t  half of the period of feeding in the sodium peroxide.  

N O T A T I O N  

t 
% 
t~J) = 0(J)ti/0x(J) I ~ 

0 

X 

l 
d 

X = x/d;  
L = l / d ;  

I] 

~t = FiXl/F2k2; 
go = FwXw/F2k2; 
F 
S 
W 

w = FwCpT; 

is the mean-ca lo r ime t r i c  t empera tu re  o f  the liquid, ~ 
is the t empera tu re  at the main heat exchanger  inlet, ~ 

is the t empera tu re  r i se  of the liquid in the heat exchanger  duet, ~ 
is the longitudinal coordinate ,  m; 
is the length of heat exchanger  sect ion,  m; 
is the duct d iameter ,  m; 

is the c i rcumference  of heat exchanger ,  m; 

is the c ross  section a r e a ,  m2; 
is the surface a rea  of heat exchanger ,  m2; 
is the velocity,  m/see ;  
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Cp 
Y 
X 

k 
Pe = wdT/a; 
Nu k = Kd2/X 2. 

is the specific heat, J/kg. ~ 
is the density, kg/m3; 
is the thermal conductivity, W/m.  ~ 
is the thermal diffusivity, m2/sec; 
is the heat transfer; 
is the heat exchange coefficient, W/m 2.~ 

S u b s c r i p t s  

1 is the auxiliary heat exchanger duct; 
2 is the main duct; 
w is the heat transferring wall; 
p is the predicted value (calculated from the temperature drop at some distance from the heat exchanger). 

1, 

2. 
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